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Abstract: The low energy spectrum of (3+1)-dimensional N = 4 supersymmetric Yang-

Mills theory on a spatial three-torus contains a certain number of bound states, character-

ized by their discrete abelian magnetic and electric ’t Hooft fluxes. At weak coupling, the

wave-functions of these states are supported near points in the moduli space of flat connec-

tions where the unbroken gauge group is semi-simple. The number of such states is related

to the number of normalizable bound states at threshold in the supersymmetric matrix

quantum mechanics with 16 supercharges based on this unbroken group. Mathematically,

the determination of the spectrum relies on the classification of almost commuting triples

with semi-simple centralizers. We complete the work begun in a previous paper, by com-

puting the spectrum of bound states in theories based on the even-dimensional spin groups

and the exceptional groups. The results satisfy the constraints of S-duality in a rather

non-trivial way.
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1. Introduction

Recently, we initiated a study of the low-energy spectrum of (3+1)-dimensional N = 4

supersymmetric Yang-Mills theory on R×T 3 [1], by considering the cases based on SU(n),

Spin(2n+1) and Sp(2n). In this paper we consider the remaining cases, i.e. the even-

dimensional spin groups and the exceptional groups.

Since the N = 4 Yang-Mills theory contains only adjoint fields and is formulated on

a spatial three torus, its states can be characterized by the discrete abelian magnetic and

electric ’t Hooft fluxes m and e [2]. We have

m ∈ M ≃ H2(T 3, C) (1.1)

e ∈ E ≃ Hom(H1(T 3, C), U(1)) , (1.2)

where C is the center of the simply connected cover G of the gauge group. By a choice of

three one-cycles generating H1(T
3, Z) ≃ (Z)3, we may identify m and e with triples valued

in C:

m = (m23,m31,m12) ∈ C3 (1.3)

e = (e1, e2, e3) ∈ C3. (1.4)
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Not all combinations of m and e may appear in a gauge theory, though: If the gauge group

is a simply connected group G, we have m = 0 and e can be arbitrary, whereas if the gauge

group is G/C, we have m arbitrary and e = 0. There are also intermediate cases where the

gauge group is given by the quotient of G by a non-trivial proper subgroup of its center C.

We will, however, be slightly more general and consider all combinations of m ∈ C3 and

e ∈ C3.

The wave-functions of low-energy states are supported near flat connections on the

gauge bundle. Such a connection is classified by its holonomies Ui, i = 1, 2, 3 along the

non-trivial cycles of T 3. The holonomies commute when regarded as elements of the gauge

group, but when lifted to the simply connected cover G they need only be almost commuting

in the sense that

UiUj = mijUjUi , (1.5)

where the mij are the components of the magnetic ’t Hooft flux. Gauge transformations

that are continuously connected to the identity act by simultaneous conjugation on the

Ui by an element of the gauge group. At a generic point in the moduli space of gauge

equivalence classes of such almost commuting triples, the gauge group is broken to a sub-

group that contains an abelian factor. The corresponding quantum states are then not

normalizable because of the abelian scalar fields. But points in the moduli space where

the unbroken gauge group is semi-simple gives rise to bound states of exactly zero energy;

the theory in a neighborhood of such a point may be modelled by supersymmetric matrix

quantum mechanics with 16 supercharges based on the Lie algebra of the unbroken gauge

group, and such quantum mechanical theories are believed to have bound states [3, 4],

which in turn lead to bound states in the N = 4 Yang-Mills theory on R×T 3. (This argu-

ment is best carried out in the weak coupling limit, but it is expected that the spectrum

of low-energy states is invariant under continuous deformations of the theory, allowing for

an interpolation between the strong and weak coupling regimes.) Diagonalizing the action

of large gauge transformations, which act by multiplication of the holonomies by elements

of the center of the gauge group, gives a spectrum of values of the electric ’t Hooft flux e.

The spectrum of low energy states of the Yang-Mills theory should be invariant under

S-duality [5], which (using multiplicative notation) acts on the electric and magnetic ’t

Hooft fluxes as follows:

T : (m, e) 7→ (m, em) as τ 7→ τ + 1

S : (m, e) 7→ (e,m−1) as τ 7→ −1/τ .
(1.6)

In our previous paper, we showed that this gives a overdetermined set of equations for

the dimensions of the spaces of bound states in quantum-mechanical models based on the

classical matrix Lie algebras. (In that paper, in addition to normalizable states, we also

considered continua of states of arbitrarily low energy, but this yields essentially no further

information.) In the present paper, we will get further checks on these results and also

(almost) determine the number of bound states for the quantum mechanical models based

on the exceptional Lie algebras. In fact, S-duality implies that the spaces Vs of normalizable
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states in supersymmetric quantum mechanics based on the Lie algebra s must obey

dim Vs =











































































1 for s ≃ su(n)

# of partitions of n into

distinct odd parts for s ≃ so(n)

# of partitions of n into

distinct parts for s ≃ sp(2n)

2 + ∆G2
for s ≃ G2

4 + ∆F4
for s ≃ F4

3 + ∆G2
for s ≃ E6

6 + ∆F4
for s ≃ E7

11 + ∆E8
for s ≃ E8

(1.7)

for some undetermined integers ∆G2
, ∆F4

, and ∆E8
. We would like to remark that if one

takes ∆G2
= ∆F4

= ∆E8
= 0, our results agree with those obtained by Kac and Smilga [4]

for the number of ground states in the mass-deformed (N = 1∗) theories. In the following

we will for simplicity assume that these are indeed the correct values; it is trivial to insert

other choices of ∆G2
, ∆F4

, and ∆E8
in our formulas if one wishes to do so.

In the next section, we consider the cases based on the even-dimensional spin groups

Spin(2n) (where one needs to distinguish the cases where the dimension 2n equals 0 or

2 modulo 4), and in the last section we consider the exceptional groups G2, F4, E6, E7,

and E8. The case by case analysis is rather tedious and we will mostly content ourselves

with giving the results. More details can be found in our previous paper [1]. Very useful

background material from mathematics and physics can also be found respectively in [6]

and [7]. Finally, we would like to remark that we expect a more intuitive explanation of

the findings of this and our previous paper to be forthcoming.

2. The even-dimensional spin groups

The centre of G = Spin(2n) is C = {1l,−1l,Γ,−Γ}, where Γ = γ1 · · · γ2n. Since Γ2 = (−1l)n,

the centre is isomorphic to Z4 when n is odd, i.e. for Spin(4k + 2), and is isomorphic to

Z2×Z2 when n is even, i.e. for Spin(4k). (For all n, {1l,−1l} is the Z2 subgroup of the

centre which upon quotioning G by it gives the SO(2n) theory.) Using the same notation

for the elements of the centre of Spin(4k + 2) and Spin(4k) allow us to treat some aspects

of these two classes on a common footing. A slight drawback is that this notation does not

stress the differences between Spin(4k+2) and Spin(4k).

As in [1], we wish to compute the generating function

f(m, e) =

∞
∑

n=0

q2nmult0Spin(2n)(m, e) , (2.1)

where mult0Spin(2n)(m, e) denotes the number of bound states in the Spin(2n) theory with

discrete ’t Hooft fluxes (m, e) ∈ C3 × C3. Even though the formulæ we obtain can be

written in such a way that they are valid in both Spin(4k) and Spin(4k+2), we will treat

these cases separately when it leads to increased clarity.
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For Spin(4k), the equivalence classes of m modulo the action of the SL(3, Z) mapping

class group of T 3 may be represented by the following elements of C3:

m # components

(1l, 1l, 1l) 1 M2k, M2k−4

(1l, 1l,−1l) 7 M2k−2, M′
2k−2

(1l,Γ,Γ) 7 Mk, M′
k, Mk−3, M′

k−3

(1l,−Γ,−Γ) 7 Mk, M′
k, Mk−3, M′

k−3

(−1l,Γ,Γ) 42 Mk−1, M′
k−1, Mk−2, M′

k−2,

(2.2)

where we have indicated the cardinality of the SL(3, Z) orbit and the different components

of the moduli space of flat connections with the rank of the unbroken subgroup as a

subscript. The cases m = (1l,Γ,Γ) and m = (1l,−Γ,−Γ) are related by the automorphism

that exchanges the two spinor representations.

For Spin(4k+2) we find instead:

m # components

(1l, 1l, 1l) 1 M2k+1, M2k−3

(1l, 1l,−1l) 7 M2k−1, M′
2k−1

(1l,Γ,Γ) 56 M
(1)
k−1, M

(2)
k−1, M

(3)
k−1, M

(4)
k−1.

(2.3)

To describe the results, we define [1, 4] the generating functions for the number of

bound states in so(n) and sp(2n) quantum mechanics:

P (q) =

∞
∑

n=1

qn dim Vso(n) =

∞
∏

k=1

(1 + q2k−1) (2.4)

Q(q) =

∞
∑

n=1

q2n dimVsp(2n) =

∞
∏

k=1

(1 + q2k). (2.5)

We will also need the decomposition of P (q) into its even and odd powers:

Peven(q) =
1

2
(P (q) + P (−q)) (2.6)

Podd(q) =
1

2
(P (q) − P (−q)) . (2.7)

2.1 The components with vector structure

From the above tables we see that the moduli spaces corresponding to the SL(3, Z) or-

bits represented by m = (1l, 1l, 1l) and (1l, 1l,−1l) can be given a common formulation for

Spin(2n). For these values of m, it is always possible to embed the holonomies into a

[Spin(l)×Spin(2n − l)] /∼ subgroup of Spin(2n), where the equivalence relation ∼ identi-

fies the −1l elements of the two factors.

As in [1], the part of the holonomies contained in the Spin(l) factor can be constructed

from the following eight building blocks (which one may visualise as the corners of a cube):






1l

1l

1l






,







γ

1l

1l






,







1l

γ

1l






,







1l

1l

γ






,







γ

γ

1l






,







γ

1l

γ






,







1l

γ

γ






,







γ

γ

γ






. (2.8)
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Here γ denotes one of the usual gamma matrices γ1, . . . , γl. Not all combinations of the

above building blocks give rise to holonomies that lie in Spin(l) (since each entry in (2.8)

can be viewed as a Pin(1) element). In addition to the l = 1, 3, 5, 7 possibilities used in [1]

to describe the moduli spaces for G = Spin(2n+1) one can also have l = 0, 4, 8.

2.1.1 The m = (1l,1l,1l) components

On the Mn component, the holonomies are







U1

U2

U3






=







t1
t2
t3






, (2.9)

where the ti belong to a maximal torus T n of Spin(2n). An explicit representation is

ti = exp(
1

2

∑

l odd

θl
iγlγl+1) (2.10)

In this paper we are only interested in the points of the moduli space where the unbroken

gauge group is semi-simple. Such gauge enhancement occurs at the points where all θl
i ∈

{0, π}. At these points, the ti reduce to a product of 1l and γlγl+1 factors. The various

possibilities can be seen as selecting an even number for each of the eight possibilities

in (2.8).

Enhanced
⊕8

i=1 so(2ni) symmetry occurs when







t1
t2
t3






=







ǫ1

ǫ2

ǫ3













1l

1l

1l







2n1

. . .







γ

γ

1l







2n4






1l

1l

γ







2n5

. . .







γ

γ

γ







2n8

. (2.11)

Here ǫ1, ǫ2 and ǫ3 are sign factors. Depending on how many of the ni’s are non-zero

(i.e. how many of the eight corner points of the cube are occupied), some or all of these

may be removed by gauge transformations (see [1]).

On the Mn−4 component, the holonomies are







U1

U2

U3






=







γ1 γ2 γ3 γ4 1l 1l 1l 1l

γ1 γ2 1l 1l γ5 γ6 1l 1l

γ1 1l γ3 1l γ5 1l γ7 1l













t1
t2
t3






, (2.12)

where the ti belong to a maximal torus T n−4 of Spin(2n − 8).

When the ti take the form (2.11), enhanced
⊕8

i=1 so(2ni + 1) symmetry occurs. Since

all eight corner points are occupied, all sign factors ǫi can be removed. This implies

that the center element −1l acts trivially, so there are no contributions for e = (1l,Γ,Γ),

e = (1l,−Γ,−Γ), or e = (−1l,Γ,Γ). (For Spin(4k + 2) these values of e are all related by

SL(3, Z); for Spin(4k) they represent distinct orbits.) But Γ may have a non-trivial action

(and acts in the same way as −Γ). It acts trivially in all directions if all eight points on the

cube are equally occupied, two combinations act trivially if the points within each of two

– 5 –
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parallel planes are equally occupied, and one combination acts trivially if the points within

each of four parallel lines are equally occupied. Furthermore, the total number of states

is easily seen to be P 8
odd(q). In this way, one finds that the contribution for e = (1l, 1l, 1l)

is 1
8P 8

odd(q) + 7
8P 4

odd(q2), and the contribution for e = (1l, 1l,−1l) is 1
8P 8

odd(q) − 1
8P 4

odd(q2).

Note that the terms with argument equal to q2 only contribute in the Spin(4k) theories.

On the Mn component, depending on the number of occupied points, a number of

relations between the signs ǫi = ± may be imposed by conjugation (see [1] for a discussion).

Assume first that three independent sign relations may be imposed. The calculation is then

analogous to the Mn−4((1l, 1l, 1l)) case, and yields the contribution 1
8P 8

even(q) + 7
8P 4

even(q2)

for e = (1l, 1l, 1l), and the contribution 1
8P 8

even(q)− 1
8P 4

even(q2) for e = (1l, 1l,−1l). In total, we

thus get

f((1l, 1l, 1l), (1l, 1l, 1l)) =
1

8
P 8

odd(q) +
7

8
P 4

odd(q2) +
1

8
P 8

even(q) +
7

8
P 4

even(q2) (2.13)

f((1l, 1l, 1l), (1l, 1l,−1l)) =
1

8
P 8

odd(q) −
1

8
P 4

odd(q2) +
1

8
P 8

even(q) −
1

8
P 4

even(q2) . (2.14)

Including also the ǫi signs gives extra states, but these have e taking one of the 56 values

where at least one component equals Γ or −Γ. So far the above results are thus actually

correct. One extra state occurs when only one of 2 · 7 possible planes is occupied. (Three

extra states occur when only one line is occupied, but this case has already appeared within

three of the single plane cases. Finally, seven extra states occur when only one point is

occupied, but this has already occured within seven of the single plane cases.) Consider

the two cases when the occupied plane is orthogonal to a given direction. There are a total

of P 4
even(q) extra states for each of the values Γ and −Γ of the corresponding component

of e. The element Γ may act non-trivially along the plane (and −Γ acts in the same way,

unless we are in the case where only a line is occupied). Two such transformations act

trivially if the whole plane is equally occupied, and one acts trivially if the points within

each of two parallel lines are equally occupied. In this way, one finds that

f((1l, 1l, 1l), (1l,Γ,Γ)) =
1

4
P 4

even(q) +
3

4
P 2

even(q2) (2.15)

f((1l, 1l, 1l), (1l,−Γ,−Γ)) =
1

4
P 4

even(q) +
3

4
P 2

even(q2). (2.16)

Using that the total number of states is P 8
even(q) + 14P 4

even(q), one finally finds that

f((1l, 1l, 1l), (−1l,Γ,Γ)) =
1

4
P 4

even(q) −
1

4
P 2

even(q2). (2.17)

Again, the terms with the argument q2 only contribute in the Spin(4k) theory. This is in

agreement with the fact that, in the Spin(4k+2) theory, the above three entries belong to

the same SL(3, Z) orbit.

2.1.2 The m = (1l,1l,−1l) components

On the Mn−2 and M′
n−2 components, the holonomies are







U1

U2

U3






=







γ1 γ2 1l 1l

γ1 1l γ3 1l

1l 1l 1l 1l













t1
t2
t3






, (2.18)
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and






U1

U2

U3






=







γ1 γ2 1l 1l

γ1 1l γ3 1l

γ1 γ2 γ3 γ4













t1
t2
t3






(2.19)

respectively, where the ti belong to a maximal torus T n−2 of Spin(2n−4). The signs ǫ1 and

ǫ2 can be removed by conjugation. Whether ǫ3 can be removed depends on the number of

occupied points (see [1]). Enhanced so(2n1 +1)⊕ . . .⊕ so(2n4 +1)⊕ so(2n5)⊕ . . .⊕ so(2n8)

and so(2n1)⊕ . . .⊕ so(2n4)⊕ so(2n5 + 1)⊕ . . .⊕ so(2n8 + 1) symmetry respectively occurs

when the ti’s take the form (2.11).

Assume first that the sign ǫ3 may be fixed. The total number of states on the two

components is then 2P 4
even(q)P 4

odd(q), and the center element −1l acts trivially in all three

directions. Γ (or equivalently −Γ) always acts non-trivially in the 3-direction. It acts

trivially in the 1- and 2-directions if the points within both the odd and even planes are

equally occupied, and it acts trivially in one direction if the points along all lines in that

direction are equally occupied. In this way, one finds that

f((1l, 1l,−1l), (1l, 1l, 1l)) =
1

4
P 4

even(q)P 4
odd(q) +

3

4
P 2

even(q2)P 2
odd(q2) (2.20)

f((1l, 1l,−1l), (1l, 1l,−1l)) =
1

4
P 4

even(q)P 4
odd(q) +

3

4
P 2

even(q2)P 2
odd(q2) (2.21)

f((1l, 1l,−1l), (1l,−1l, 1l)) =
1

4
P 4

even(q)P 4
odd(q) −

1

4
P 2

even(q2)P 2
odd(q2) (2.22)

f((1l, 1l,−1l), (1l,−1l,−1l)) =
1

4
P 4

even(q)P 4
odd(q) −

1

4
P 2

even(q2)P 2
odd(q2). (2.23)

Note that again the terms with q2 argument only contribute in the Spin(4k) theory. When

only the odd plane is occupied, the sign ǫ3 is relevant and gives P 4
odd(q) extra states for

each of the values e3 = Γ and e3 = −Γ. The action of Γ (or equivalently −Γ) in the 1- and

2-directions is as before. In this way, one finds that

f((1l, 1l,−1l), (1l, 1l,Γ)) =
1

4
P 4

odd(q) +
3

4
P 2

odd(q2) (2.24)

f((1l, 1l,−1l), (1l, 1l,−Γ)) =
1

4
P 4

odd(q) +
3

4
P 2

odd(q2) (2.25)

f((1l, 1l,−1l), (1l,−1l,Γ)) =
1

4
P 4

odd(q) −
1

4
P 2

odd(q2) (2.26)

f((1l, 1l,−1l), (1l,−1l,−Γ)) =
1

4
P 4

odd(q) −
1

4
P 2

odd(q2). (2.27)

Again the q2 corrections only appear in the Spin(4k) theory as required by SL(3, Z).

2.2 The components without vector structure

Next we turn to the remaining cases, i.e. the choices of m that involve at least one of Γ

and/or −Γ. For these values of m, it is always possible to embed the holonomies into

a
[

Spin(2l) × (SU(2)L × SU(2)R)(n−l)/2
]

/∼ subgroup of Spin(2n), where the equivalence

relation identifies the element −1l of Spin(2l) with the element (−1l,−1l) of each SU(2)L ×

SU(2)R factor. When n (and l) is even, the center of Spin(2n) is generated by Γ =
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(Γ♮, (1l,−1l)(n−l)/2), where Γ♮ = γ1 · · · γ2l is a generator of the center of Spin(2l). For n

(and l) odd, one also needs −Γ = (−Γ♮, (1l,−1l)(n−l)/2)) to generate the full centre.

The part of the holonomies contained in the Spin(2l) factor can be constructed from

six different building blocks, which can be taken to be e.g.:







1√
2
(1 + γiγj)

γj

γj






,







1√
2
(1 + γiγj)

γj

γi






,







γj
1√
2
(γi − γj)

1√
2
(γi − γj)






,







γj
1√
2
(γi − γj)

1√
2
(γi + γj)






,







γj
1√
2
(1 − γiγj)

1√
2
(1 − γiγj)






,







γj
1√
2
(1 − γiγj)

1√
2
(1 + γiγj)






.

(2.28)

Each entry can be viewed as an element in Pin(2) and not every combination corresponds

to an element in Spin(2l) (i.e. contains only even numbers of gamma matrices). It turns

out that only l = 0, 2, 3, 4, 6 are possible. Depending on which combinations are selected,

one of the values m = (±1l,±Γ,±Γ) arises.

We should stress that there is nothing special about the above construction; any con-

figuration in Spin(2l) which is such that it satisifies the right relations and breaks the

so(2l) symmetry completely will work as a basis for the construction of a component of the

moduli space.

For later purposes it is useful to reduce the above Pin(2) expressions to O(2) matrices







−iσy

σz

σz






,







−iσy

σz

−σz






,







σz

σx

σx






,







σz

σx

−σx






,







σz

iσy

iσy






,







σz

iσy

−iσy






. (2.29)

Using these building blocks instead will lead to holonomies that belong to SO groups rather

than Spin groups.

2.2.1 The m = (1l,Γ,Γ) and m = (1l,−Γ,−Γ) components for G = Spin(4k)

For the Mk and M′
k components, there is no prefactor involving the building blocks

in (2.28). The holonomies belong to a maximal torus of Spin(2k) and can be writ-

ten in terms of gamma matrices. However, it will be more convenient to use an

[SU(2) × SU(2)]k / ∼ subgroup of Spin(4k), where the equivalence relation identifies the

elements (−1l,−1l) of the k factors, and write the holonomies as







U1

U2

U3






=







s1

s2

s3






≡













A

B

±B






,







t1
t2
t3

























A

B

B






,







t1
t2
t3













k−1

. (2.30)

Here the fixed SU(2) elements A and B obey AB = −BA (e.g. A = iσz and B = iσx) and

each ti belong to a maximal torus of SU(2). The signs label the two components. Note that

the ± signs can be moved to any of the other k − 1 factors, and thus the above expression

is symmetric under permutation of the k factors.
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Enhanced sp(2n1) ⊕ sp(2n2) ⊕ so(2n3) ⊕ . . . ⊕ so(2n8) symmetry occurs when






t1
t2
t3







k

=







1l

1l

1l







n1






1l

1l

−1l







n2






1l

iσ3

ıσ3







n3






1l

iσ3

−iσ3







n4






iσ3

1l

1l







n5






iσ3

1l

−1l







n6






iσ3

iσ3

iσ3







n7






iσ3

iσ3

−iσ3







n8

.

(2.31)

These eight possibilities can be visualised as the corners of a cube. Why the unbroken gauge

symmetry is precisely as above can be understood as follows: The (8k2 − 2k)-dimensional

adjoint representation of Spin(4k) decomposes under [SU(2)×SU(2)]×· · ·×[SU(2)×SU(2)]

as

k [(. . . , 3, 1, . . .) ⊕ (. . . , 1, 3, . . .)] ⊕
1

2
k(k − 1)(. . . , 2, 2, . . . , 2, 2, . . .). (2.32)

The (3, 1) generators are always broken. The (1, 3) generators are unbroken for n1 and n2,

and broken to to a single generator for the other ni. The spectrum of A⊗A and B ⊗B in

the (2, 2) representation of SU(2) × SU(2) is easily determined to be:
(

A ⊗ A

B ⊗ B

)

∈

{

1 1 −1 −1

1 −1 1 −1

}

. (2.33)

from which one can deduce the number of unbroken generators coming from the

(. . . , 2, 2, . . . , 2, 2, . . .) pieces.

From the expressions for the holonomies given earlier, we see that the center element

Γ = [(−1, 1)]k acts trivially in the 1 direction. It acts non-trivially and equally in the 2-

and 3-directions, unless the two planes are equal (i.e. n2l−1 = n2l). The center element

−1l = ((−1l,−1l), [(1l, 1l)]k−1) acts non-trivially in the 1-direction if and only if n5 = n6 =

n7 = n8 = 0 (similar statements hold for the other directions). In this way, one finds the

contributions

fk((1l,Γ,Γ), (1l, 1l, 1l)) =
1

2
Q2(q2)P 6

even(q2) +
1

2
Q(q4)P 3

even(q4) (2.34)

fk((1l,Γ,Γ), (1l,−1l,−1l)) =
1

2
Q2(q2)P 6

even(q2) −
1

2
Q(q4)P 3

even(q4) (2.35)

fk((1l,Γ,Γ), (1l,Γ,Γ)) =
1

2
Q2(q2)P 6

even(q2) +
1

2
Q(q4)P 3

even(q4) (2.36)

fk((1l,Γ,Γ), (1l,−Γ,−Γ)) =
1

2
Q2(q2)P 6

even(q2) −
1

2
Q(q4)P 3

even(q4) (2.37)

fk((1l,Γ,Γ), (Γ, 1l, 1l)) =
1

2
Q2(q2)P 2

even(q2) +
1

2
Q(q4)Peven(q4) (2.38)

fk((1l,Γ,Γ), (Γ,−1l,−1l)) =
1

2
Q2(q2)P 2

even(q2) −
1

2
Q(q4)Peven(q4) (2.39)

fk((1l,Γ,Γ), (Γ,Γ,Γ)) =
1

2
Q2(q2)P 2

even(q2) +
1

2
Q(q4)Peven(q4) (2.40)

fk((1l,Γ,Γ), (Γ,−Γ,−Γ)) =
1

2
Q2(q2)P 2

even(q2) −
1

2
Q(q4)Peven(q4). (2.41)

For the Mk−3 and M′
k−3 components, the holonomies are







U1

U2

U3






=







1
2(1 + γ1γ2)(1 + γ3γ4)γ6γ8γ10γ12

1
4γ2γ4(γ5 − γ6)(γ7 − γ8)(1 − γ9γ10)(1 − γ11γ12)
1
4γ2γ3(γ5 − γ6)(γ7 + γ8)(1 − γ9γ10)(1 + γ11γ12)













s1

s2

s3






, (2.42)
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where (s1, s2, s3) is of the same form as in (2.30). To find the enhanced symmetry we

again look at the spectrum. The (8k2 −2k)-dimensional adjoint representation of Spin(4k)

decomposes under Spin(12) × [SU(2) × SU(2)] × · · · × [SU(2) × SU(2)]Spin(4k − 12) as

(66, . . .) ⊕ (k − 3) [(1, . . . , 3, 1, . . .) ⊕ (1, . . . , 1, 3, . . .)] (2.43)

⊕(k − 3)(12, . . . , 2, 2, . . .) ⊕
1

2
(k − 3)(k − 4)(. . . , 2, 2, . . . , 2, 2, . . .).

In addition to the above results, one also needs to determine spectrum of the prefactor

in (2.42) tensored with the triplet (A,B,B) in the (12, 2) representation of Spin(12)×SU(2).

Since we need the vector representation, it is convenient to reduce the Spin(12) expression

to SO(12) using (2.29). The result of the calculation is that enhanced sp(2n1)⊕ sp(2n2)⊕

so(2n3 + 1) ⊕ . . . ⊕ so(2n8 + 1) symmetry occurs when the ti’s take the values in (2.31).

The analysis for these components is analogous to the one for the preceeding cases,

with the difference that all center elements (−1l, Γ and −Γ) act trivially in the 1-direction.

The resulting contributions are:

fk−3((1l,Γ,Γ), (1l, 1l, 1l)) =
1

2
Q2(q2)P 6

odd(q2) +
1

2
Q(q4)P 3

odd(q4) (2.44)

fk−3((1l,Γ,Γ), (1l,−1l,−1l)) =
1

2
Q2(q2)P 6

odd(q2) −
1

2
Q(q4)P 3

odd(q4) (2.45)

fk−3((1l,Γ,Γ), (1l,Γ,Γ)) =
1

2
Q2(q2)P 6

odd(q2) +
1

2
Q(q4)P 3

odd(q4) (2.46)

fk−3((1l,Γ,Γ), (1l,−Γ,−Γ)) =
1

2
Q2(q2)P 6

odd(q2) −
1

2
Q(q4)P 3

odd(q4) . (2.47)

The total partition functions for these values of m are given by f(m, e) = fk(m, e) +

fk−3(m, e).

2.2.2 The m = (1l,Γ,Γ) components for G = Spin(4k + 2)

For the M
(c)
k−1, c = 0, 1, 2, 3 components, the holonomies are







U1

U2

U3






=







1
2(1 + γ1γ2)γ4γ6

1
2γ2(γ3 − γ4)(1 − γ5γ6)
1
2γ2(γ3 − γ4)(1 − γ5γ6)













s1

s2

s3






, (2.48)

and






U1

U2

U3






=







1
2(1 + γ1γ2)γ4γ6

1
2γ2(γ3 − γ4)(1 − γ5γ6)
1
2γ1(γ3 + γ4)(1 + γ5γ6)













s1

s2

s3






, (2.49)

where again (s1, s2, s3) is of the same form (with a suitable dimension) as in (2.30).

The enhanced symmetry is determined as above by using that the 8k2 +6k +1 dimen-

sional adjoint representation of Spin(4k + 2) decomposes as

(15, . . .) ⊕ (k − 1) [(1, . . . , 3, 1, . . .) ⊕ (1, . . . , 1, 3, . . .) ⊕ (6, . . . , 2, 2, . . .)] (2.50)

⊕
1

2
(k − 1)(k − 2) [(. . . , 2, 2, . . . , 2, 2, . . .)] .
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It can be shown that enhanced

sp(2n1)⊕sp(2n2)⊕so(2n3+1)⊕so(2n4)⊕so(2n5+1)⊕so(2n6)⊕so(2n7+1)⊕so(2n8) (2.51)

and

sp(2n1)⊕sp(2n2)⊕so(2n3)⊕so(2n4+1)⊕so(2n5)⊕so(2n6+1)⊕so(2n7)⊕so(2n8+1) (2.52)

symmetry respectively occurs when the ti’s take the values in (2.31).

On the first holonomy, the centre acts trivially (up to gauge conjugation) and on the

second and third it acts equally and freely (again up to gauge conjugation). From this it

follows that

f((1l,Γ,Γ), (1l, 1l, 1l)) = Q2(q2)P 3
even(q2)P 3

odd(q2)

f((1l,Γ,Γ), (1l,−1l,−1l)) = Q2(q2)P 3
even(q2)P 3

odd(q2) (2.53)

f((1l,Γ,Γ), (1l,Γ,Γ)) = Q2(q2)P 3
even(q2)P 3

odd(q2)

f((1l,Γ,Γ), (1l,−Γ,−Γ)) = Q2(q2)P 3
even(q2)P 3

odd(q2).

2.2.3 The m = (−1l,Γ,Γ) components for G = Spin(4k)

On the Mk−1 and M′
k−1 components, the holonomies are







U1

U2

U3






=







1
2(1 + γ1γ2)(1 + γ3γ4)

γ2γ4

γ2γ3













s1

s2

s3






, (2.54)

where (s1, s2, s3) is of the form (2.30). Note that there are two other ways to select two

columns from (2.28) which give values of m in same orbit as the above choice.

By analysing the spectrum as above, one finds that enhanced gauge symmetry

sp(2n1)⊕sp(2n2)⊕so(2n3 +1)⊕so(2n4 +1)⊕so(2n5)⊕so(2n6)⊕so(2n7)⊕so(2n8) (2.55)

occurs when the ti’s take the values in (2.31).

On the Mk−2 and M′
k−2 components, the holonomies are







U1

U2

U3






=







γ2γ4γ6γ8
1
4(γ1 − γ2)(γ3 − γ4)(1 − γ5γ6)(1 − γ7γ8)
1
4(γ1 − γ2)(γ3 + γ4)(1 − γ5γ6)(1 + γ7γ8)













s1

s2

s3






, (2.56)

where (s1, s2, s3) is of the form (2.30). Again there are two other ways to select four

columns from (2.28) which give values of m in the same orbit as the above choice. Note

that (2.56) is the ‘complement’ of (2.54), cf. [8].

One finds that enhanced gauge symmetry

sp(2n1) ⊕ sp(2n2) ⊕ so(2n3) ⊕ so(2n4) ⊕ (2.57)

⊕so(2n5 + 1) ⊕ so(2n6 + 1) ⊕ so(2n7 + 1) ⊕ so(2n8 + 1)
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occurs when the ti’s take the values in (2.31).

Eight of the 64 large gauge transformations may be compensated by conjugation with

g = Uk
1 U l

2U
m
3 for k, l,m = 0, 1, so only 64/8 = 8 different values of e appear. The

corresponding partition functions are given below

f((−1l,Γ,Γ), (1l, 1l, 1l)) =
1

2
Q2(q2)[P 2

odd(q2)P 4
even(q2) + P 4

odd(q2)P 2
even(q2)]

+
1

2
Q(q4)[Podd(q4)P 2

even(q4) + P 2
odd(q4)Peven(q4)]

f((−1l,Γ,Γ), (−1l,Γ,Γ)) =
1

2
Q2(q2)[P 2

odd(q2)P 4
even(q2) + P 4

odd(q2)P 2
even(q2)]

+
1

2
Q(q4)[Podd(q4)P 2

even(q4) + P 2
odd(q4)Peven(q4)]

f((−1l,Γ,Γ), (1l,−1l,−1l)) =
1

2
Q2(q2)[P 2

odd(q2)P 4
even(q2) + P 4

odd(q2)P 2
even(q2)]

−
1

2
Q(q4)[Podd(q4)P 2

even(q4) − P 2
odd(q4)Peven(q4)]

f((−1l,Γ,Γ), (−1l,−Γ,−Γ)) =
1

2
Q2(q2)[P 2

odd(q2)P 4
even(q2) + P 4

odd(q2)P 2
even(q2)]

−
1

2
Q(q4)[Podd(q4)P 2

even(q4) − P 2
odd(q4)Peven(q4)]

f((−1l,Γ,Γ), (Γ, 1l, 1l)) =
1

2
Q2(q2)P 2

odd(q2) +
1

2
Q(q4)Podd(q4)

f((−1l,Γ,Γ), (−Γ,Γ,Γ)) =
1

2
Q2(q2)P 2

odd(q2) +
1

2
Q(q4)Podd(q4) (2.58)

f((−1l,Γ,Γ), (Γ,−1l,−1l)) =
1

2
Q2(q2)P 2

odd(q2) −
1

2
Q(q4)Podd(q4)

f((−1l,Γ,Γ), (−Γ,−Γ,−Γ)) =
1

2
Q2(q2)P 2

odd(q2) −
1

2
Q(q4)Podd(q4).

2.3 Orientifold interpretation

As discussed in [9, 8, 1] the above moduli spaces can be described in terms of orientifolds.

This language is convenient since it immediately gives the unbroken gauge symmetry. When

the components of m are 1l or −1l, the relevant orientifold contains eight O− orientifold

planes. As usual, n D-branes located at one of these O− planes leads to so(n) gauge

enhancement. A single D-brane stuck at one of the eight O− orientifold planes corresponds

to the eight building blocks in (2.8). Thus the prefactors contained in Spin(l) correspond

to configurations of stuck (‘fractional’) branes. In addition, each of the the parameters

in (2.10) correspond to the location of a brane-mirror pair. When the components of

m contains at least one of Γ or −Γ, the relevant orientifold contains two O+ and six

O− planes [8], where n D-branes located at one of the O+ planes leads to sp(n) gauge

enhancement. Only the O− planes can support an odd number of branes, and a single

stuck D-brane at one of six O− planes corresponds to the six building blocks in (2.28). The

Spin(2l) prefactors (zero-rank triples) are again constructed from the stuck branes. The

part in (2.30) describes brane-mirror pairs. Note that the total number of branes in the

2O+ 6 O− orientifold is only half the number in the 8 O− orientifolds.
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2.4 S-duality

S-duality is the statement that the number of bound states with quantum numbers (m, e)

should agree with the number of states with (e,m−1) (we write m−1 rather than −m since

we are using multiplicative notation). Looking at the tables in the previous section we

can check if the spectrum of bound states is S-dual (we occasionally also need to take the

SL(3, Z) symmetry into account). We will need some identities for the generating functions:

Q(q2)P (q2) = Q(q) (2.59)

P (−q)P (q) = P (−q2) (2.60)

Q(q)P (−q2) = 1, (2.61)

where the last line is Euler’s famous identity which is easy to prove. The theta functions

with zero argument (theta constants) can be written in terms of infinite products as

θ2(q) = 2q1/4
∞
∏

k=1

(1 − q2k)(1 + q2k)2 ,

θ3(q) =
∞
∏

k=1

(1 − q2k)(1 + q2k−1)2 , (2.62)

θ4(q) =
∞
∏

k=1

(1 − q2k)(1 − q2k−1)2 .

The theta constants satisfy the following identities (these are not all independent and are

essentially all identities of this type):

θ2(q)
4 = θ3(q)

4 − θ4(q)
4 , (2.63)

2 θ2(q
2)2 = θ3(q)

2 − θ4(q)
2 , (2.64)

2 θ2(q
4) = θ3(q) − θ4(q) , (2.65)

2 θ3(q
2)2 = θ3(q)

2 + θ4(q)
2 , (2.66)

2 θ3(q
4) = θ3(q) + θ4(q) , (2.67)

θ4(q
2)2 = θ3(q)θ4(q) . (2.68)

We will only check S-duality for the non-trivial cases, and take into account the sym-

metry between Γ and −Γ that corresponds to interchanging the two spinor representations.

For the number of states with (m, e) = ((1l, 1l, 1l), (1l,−1l,−1l)) to agree with the dual number

we require

1

8
P 8

odd(q)+
1

8
P 8

even(q)−
1

8
P 4

odd(q2)−
1

8
P 4

even(q2) =
1

4
P 4

even(q)P 4
odd(q)+

3

4
P 2

even(q2)P 2
odd(q2),

(2.69)

which can be rewritten as

P (q)6P (−q)2 + P (−q)6P (q)2 + 2P (q)4P (−q)4 = 2[P (q2)4 + P (−q2)4], (2.70)

which in turn is equivalent to (2.66), using (2.60).

– 13 –



J
H
E
P
0
7
(
2
0
0
7
)
0
8
4

For the number of states with (m, e) = ((1l,Γ,Γ), (1l, 1l, 1l)) to agree with the dual

number we require

1

2
Q(q2)2[Podd(q2)6 + Peven(q2)6 + 2P 3

even(q2)P 3
odd(q2)] (2.71)

+
1

2
Q(q4)[Podd(q4)3 + Peven(q4)3] =

1

4
P 4

even(q) +
3

4
P 2

even(q2).

A similar analysis for (m, e) = ((1,Γ,Γ), (1,−1,−1)) leads to

1

2
Q(q2)2[Podd(q2)6 + Peven(q2)6 + 2P 3

even(q2)P 3
odd(q2)] (2.72)

−
1

2
Q(q4)[Podd(q4)3 + Peven(q4)3] =

1

4
P 4

odd(q) +
3

4
P 2

odd(q2).

The difference of the above two equations can be proven using (2.59), (2.61) together

with (2.67). The sum can be proven using (2.59)–(2.61) together with (2.66) (the iden-

tity (2.68) is also useful).

For (m, e) = ((−1l,Γ,Γ), (1l, 1l, 1l)) the S-duality requirement is

1

2
Q2(q2)[P 2

odd(q2)P 4
even(q2) + P 4

odd(q2)P 2
even(q2) + 2P 3

odd(q2)P 3
even(q2)] (2.73)

+
1

2
Q(q4)[Podd(q4)P 2

even(q4) + P 2
odd(q4)Peven(q4)] =

1

4
P 4

even(q) −
1

4
P 2

even(q2).

Similarly, for (m, e) = ((−1l,Γ,Γ), (1l,−1l,−1l)) we need

1

2
Q2(q2)[P 2

odd(q2)P 4
even(q2) + P 4

odd(q2)P 2
even(q2) + 2P 3

odd(q2)P 3
even(q2)] (2.74)

−
1

2
Q(q4)[Podd(q4)P 2

even(q4) + P 2
odd(q4)Peven(q4)] =

1

4
P 4

odd(q) −
1

4
P 2

odd(q2).

The difference of the above two equations can again be proven using (2.59)–(2.61) to-

gether with (2.67). The sum can be proven using (2.59)–(2.61) together with (2.66) (the

identity (2.68) is also useful).

Finally, S-duality for (e,m) = ((1l,Γ,Γ), (−1l,Γ,−Γ)) only needs to be checked for

Spin(4k+2) and requires

1

2
Q2(q2)Peven(q2)2 −

1

2
Q(q4)Peven(q4) =

1

2
Q2(q2)Podd(q2)2 +

1

2
Q(q4)Podd(q4), (2.75)

which is equivalent to

Q2(q2)P (q2)P (−q2) = Q(q4)P (q4), (2.76)

which in turn follows from (2.59)–(2.61).

Above we only analyzed the S transformation of the S-duality group (1.6); the T trans-

formation of the S-duality group acts as (m, e) → (m, em) (again we use multiplicative

notation). As a perusal of the tables above show, T is also a symmetry. To conclude, we

have seen that S duality is valid provided that the number of bound states of supersym-

metric matrix quantum mechanics agree with those listed in the introduction. (It is not

difficult to convince oneself that this is the unique solution, cf. [1].) Note that the same

conclusion was obtained in our previous paper [1] by considering the G = Spin(2n+1) and

G = Sp(2n) S-dual theories. However, for those cases it was the identities (2.63)–(2.65)

that were relevant whereas in this paper (2.66)–(2.68) were used.
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3. The exceptional groups

The remaining cases, i.e. G ≃ G2, F4, E6, E7, E8, may be analyzed as follows: Each com-

ponent of the moduli space of flat connections may be described by finding a suitable

subgroup K×H ⊂ G, where K admits an almost commuting triple (k1, k2, k3) of the ap-

propriate magnetic ’t Hooft flux m, and H is simple. The holonomies are then given

by






U1

U2

U3






=







k1, t1
k2, t2
k3, t3






, (3.1)

where the ti, i = 1, 2, 3 belong to a maximal torus T of H. The first step is to classify all

possible semi-simple subgroups of H. Such a subgroup S is unbroken precisely when the

ti are elements of the center of S. We are only interested in equivalence classes of such

choices modulo conjugation. Conjugation by elements of H corresponds to the Weyl group

of H; to take conjugation by arbitrary elements of G into account, we must also divide by

those automorphisms of H that leave the fundamental representation of G invariant. One

should then determine the unbroken subalgebra s of the Lie algebra of G in these cases.

In most cases, s is the Lie algebra of S, but in some cases it is larger, because generators

of the Lie algebra of G that do not belong to the Lie algebra of K×H may be unbroken.

As before, such a configuration contributes dimVs states. Finally, one must investigate the

transformation properties of these states under large gauge transformations, which act by

multiplication of the holonomies Ui by elements of the center C of G, to determine their

values of the electric ’t Hooft flux e.

3.1 G ≃ G2

This group has g∨ = 4 and a trivial center C ≃ 1.

The moduli space contains a 2-dimensional component, for which K is trivial and

H ≃ G2. The possible semi-simple subgroups of H are G2, SU(3), and SU(2) ⊗ SU(2)/ ∼,

where ∼ denotes the equivalence relation (−1l2,−1l2) ∼ (1l2, 1l2). S ≃ G2 is unbroken

when the ti belong to the trivial center of G2, and this single configuration contributes

dim VG2
= 2 states (assuming that ∆G2

= 0). S ≃ SU(3) is unbroken when the ti
belong to the Z3 center of SU(3). Of these 27 choices, the one in which all the ti equal

the unit element actually has G2 symmetry and should not be taken into account. The

remaining 26 are pairwise equivalent under the complex conjugation automorphism of

SU(3), so there are 13 inequivalent configurations, each of which contributes dimVsu(3) = 1

each. Similarly, S ≃ SU(2)× SU(2)/ ∼ is unbroken for 8 different choices of the ti, one of

which actually gives unbroken G2 and should be removed, whereas the remaining 7 gives

dim Vsu(2) × dimVsu(2) = 1 each.

The moduli space also contains a 0-dimensional component, for which K ≃ G2 and H
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is trivial. This gives 1 state. All together, we get

K s states

1 G2 2 × 1

su(3) 13

su(2) ⊕ su(2) 7

G2 ∅ 1

23

(3.2)

3.2 G ≃ F4

This case, with g∨ = 9 and C ≃ 1, is rather similar to the G2 case, and we will only display

the results:
K s states

1 F4 4 × 1

so(9) 2 × 7

su(3) ⊕ su(3) 13

sp(6) ⊕ su(2) 2 × 7

so(8) 2 × 7

so(6) ⊕ so(3) 28

sp(4) ⊕ su(2) ⊕ su(2) 21

su(2) ⊕ su(2) ⊕ su(2) ⊕ su(2) 7

G2 su(2) 1

F4 ∅ 1

F4 ∅ 1

118

(3.3)

3.3 G ≃ E6

This group (with g∨ = 12) has a non-trivial center C ≃ Z3, so we must distinguish the

cases with different values of m, and also determine the values of e.

When m is trivial, the results are

K s states e trivial e non−trivial

1 E6 3 × 27 3 3

su(6) ⊕ su(2) 189 7 7

su(3) ⊕ su(3) ⊕ su(3) 234 26 8

G2 su(3) 27 1 1

E6 ∅ 1 1 0

E6 ∅ 1 1 0

39 19

(3.4)

In most of these cases, C acts non-trivially on all three holonomies, so that there is

1/27 of the total number of states for each of the single trivial and the 26 non-trivial values
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of e. The exception is the su(3) ⊕ su(3) ⊕ su(3) states, where C acts trivially on one of

the holonomies, so that 1/9 of the total number of states has e trivial, and the remaining

states are equally divided between the non-trivial values of e.

When m is non-trivial, there are three copies of each component corresponding to the

possible values of e. C acts freely on these components in the direction of m and trivially

in the other two directions, so there will be an equal number of states for each value of

e parallel to m, i.e. e is trivial, equal to m or the inverse of m. One set of components

are obtained by taking K × H ≃ SU(3) × G2 ⊂ E6 with the branching of the adjoint

representation

78 = (8, 1) ⊕ (1, 14) ⊕ (8, 7). (3.5)

Just as in the G ≃ G2 case considered above, the possible unbroken Lie algebras are

s ≃ G2, su(3), su(2) ⊕ su(2). In the s ≃ G2 and s ≃ su(2) ⊕ su(2) cases, the unbroken

generators are given by a subset of the (1, 14) representation, and as before get 2 × 1

and 7 states respectively. The s ≃ su(3) case is different though: For 4 out of the 13

configurations in which the holonomy in the direction parallel to m is trivial, 6 of the

generators of the (8, 7) representation are unbroken in addition to the 8 su(3) generators in

(1, 14). Together these generate an unbroken G2 algebra (which is related by conjugation

in E6 to the ’standard’ algebra H ≃ G2), so these configurations should not be counted.

Adding also the contributions from the set of components with K ≃ E6 and H trivial, we

get

K s states

SU(3) G2 2 × 1

su(3) 9

su(2) ⊕ su(2) 7

E6 ∅ 1

19

(3.6)

The appearance of 19 states both for m trivial, e non-trivial and for m non-trivial, e parallel

to m is a manifestation of S-duality.

3.4 G ≃ E7

This case has g∨ = 18, C ≃ Z2, and is rather similar to the previous one. For m trivial,
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we get
K s states e trivial e non−trivial

1 E7 6 × 8 6 6

su(8) 28 7 3

su(6) ⊕ su(3) 104 13 13

so(12) ⊕ su(2) 3 × 56 21 21

so(8) ⊕ su(2) ⊕ su(2) ⊕ su(2) 2 × 56 14 14

so(6) ⊕ so(6) ⊕ su(2) 112 14 14

su(2)7 8 1 1

G2 sp(6) 2 × 8 2 2

E6 su(2) 8 1 1

E6 su(2) 8 1 1

E7 ∅ 1 1 0

E7 ∅ 1 1 0

82 76

(3.7)

For m non-trivial, the components are come in pairs. C acts freely on these components

in the direction of m and trivially in the two remaining directions, so there will be an equal

number of states for e trivial and e equal to m. One set of components is constructed using

a K × H ≃ SU(2) × F4 ⊂ E7 subgroup under with the branching rule

133 = (3, 1) ⊕ (1, 52) ⊕ (3, 26). (3.8)

The list of possible subgroups of F4 is of course the same as the one presented for the G ≃ F4

case. But their generators, which lie in the (1, 52) representation, may be complemented

with generators from the (3, 26) representation and build up larger algebras. A new feature

is that some of these algebras are not isomorphic to subalgebras of F4. The spectrum of

states with e trivial or with e = m is

K s states

A1 F4 4 × 1

so(9) 2 × 4

su(3) ⊕ su(3) 13

sp(6) ⊕ su(2) 2 × 4

sp(8) 2 × 3

so(6) ⊕ so(3) 16

so(5) ⊕ so(5) 6

so(7) ⊕ su(2) 12

Spin(12) su(2) 1

E7 ∅ 1

E7 ∅ 1

76

(3.9)

Again, the appearance of 76 states for m trivial, e non-trivial and for m non-trivial, e

parallel to m is a manifestation of S-duality.
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3.5 G ≃ E8

This case, with g∨ = 30 and C ≃ 1, is mopre involved but presents no particular new

features compared to the previous cases. The spectrum of states is

K s states

1 E8 11

su(5) ⊕ su(5) 31

su(9) 13

E7 ⊕ su(2) 6 × 7

E6 ⊕ su(3) 3 × 13

su(6) ⊕ su(3) ⊕ su(2) 91

su(3) ⊕ su(3) ⊕ su(3) ⊕ su(3) 117

su(8) ⊕ su(2) 28

so(16) 5 × 7

so(12) ⊕ su(2) ⊕ su(2) 3 × 21

so(10) ⊕ so(6) 2 × 28

so(8) ⊕ so(8) 2 × 2 × 7

so(8) ⊕ su(2)4 2 × 7

so(6) ⊕ so(6) ⊕ su(2) ⊕ su(2) 42

su(2)8 7

G2 F4 4 × 1

so(7) ⊕ so(3) 28

su(3) ⊕ su(3) 13

sp(8) 2 × 7

E6 G2 3 × 1

su(2) ⊕ su(2) 7

E6 G2 3 × 1

su(2) ⊕ su(2) 7

E7 su(2) 1

E7 su(2) 1

E8 ∅ 1

E8 ∅ 1

E8 ∅ 1

E8 ∅ 1

E8 ∅ 1

E8 ∅ 1

704

(3.10)
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